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Abstract—In this paper, multiple regression analysis is used to
model the top of descent (TOD) location of user-preferred descent
trajectories computed by the flight management system (FMS) on
over 1000 commercial flights into Melbourne, Australia. In ad-
dition to recording TOD, the cruise altitude, final altitude, cruise
Mach, descent speed, wind, and engine type were also identified
for use as the independent variables in the regression analysis.
Both first-order and second-order models are considered, where
cross-validation, hypothesis testing, and additional analysis are
used to compare models. This identifies the models that should
give the smallest errors if used to predict TOD location for new
data in the future. A model that is linear in TOD altitude, final
altitude, descent speed, and wind gives an estimated standard de-
viation of 3.9 nmi for TOD location given the trajectory parame-
ters, which means about 80% of predictions would have error less
than 5 nmi in absolute value. This accuracy is better than demon-
strated by other ground automation predictions using kinetic mod-
els. Furthermore, this approach would enable online learning of
the model. Additional data or further knowledge of algorithms
is necessary to conclude definitively that no second-order terms
are appropriate. Possible applications of the linear model are de-
scribed, including enabling arriving aircraft to fly optimized de-
scents computed by the FMS even in congested airspace.

Keywords — idle-thrust descents; trajectory prediction; top of de-
scent; flight management system

I. INTRODUCTION

In congested airspace today, controllers manually direct air-
craft to descend in steps in order to merge them into arrival
streams. Allowing aircraft to descend smoothly at idle thrust
instead would decrease fuel consumption, emissions, and noise
to surrounding communities. Such optimized descents are com-
puted by the flight management system (FMS), but increas-
ing the use of these user-preferred trajectories will require a
move from tactical clearances to trajectory management. This
in turn will require more accurate trajectory prediction, espe-
cially around congested airports [1,2].

To fill this need, many research groups have developed
decision support tools, such as the Efficient Descent Advisor
(EDA), using kinetic models. Although these methods have
resulted in reasonable prediction of time of arrival at specific
trajectory points, they have not achieved sufficient accuracy in
predicting top of descent (TOD) [4]. A major cause of the error
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is differences between the aircraft performance models used by
the FMS and by the decision support tool.

The purpose of this paper is to use regression analysis to
determine the feasibility of modeling TOD location as a first or
second order polynomial function of recorded aircraft and tra-
jectory parameters. Over 1000 FMS descents into Melbourne,
Australia were used in the analysis. The importance of the
various parameters is analyzed using K -fold cross-validation.
Since the data analyzed only include flights from one airline ar-
riving at one airport, the coefficients estimated from them can-
not be considered definitive, so development of a model suit-
able for an operational decision support tool will be the subject
of future research.

The problem background and related research are described
in Sec. II. A statement of the problem and description of the
data analyzed are in Sec. III and Sec. IV, respectively. Sec. V
presents the regression analysis, concluding with a discussion
of the results from a high-level perspective. To indicate how
the models presented in this paper can enable more aircraft to
fly descents as computed by FMS, Sec. VI describes possible
applications. A summary of conclusions is in Sec. VII.

II. BACKGROUND

Traditional Air Traffic Control (ATC) activities involve the
separation and sequencing of aircraft by the controller monitor-
ing the progress of each aircraft and mentally projecting ahead
where the aircraft will be in the future. In the descent phase,
this projecting ahead leads to a difficult problem for ATC to
resolve. Consequently, controllers often direct arriving aircraft
to descend in steps so that they can be merged while in level
flight. This is particularly true in the US with many climbing,
crossing and overflying traffic streams adding complexity to the
situation, but this problem is not unique to any location. Aus-
tralia has designed its airspace for crossing tracks to occur in
the cruise phase in preference to the climb and decent phases.
When combined with procedural altitude restrictions, arriving
aircraft can plan to fly FMS-optimized descents, but this does
not remove the need for ATC to have an accurate view of the
trajectory to be flown. Improved knowledge of the TOD loca-
tion by controllers and ground automation would increase the
percentage of descents on FMS-computed trajectories.



Many different research groups have developed decision
support tools along these lines, including EDA developed by
NASA [3]. For a sample of roughly 200 operational descents in
four different types of aircraft, over 90% of the metering time
predictions from EDA have absolute error less than 30 sec [4].
For the TOD location prediction error, on the other hand, fewer
than half the predictions have absolute error less than 5 nmi,
which is suspected to be inadequate. References [3, 5-8] also
investigated the prediction of the vertical profile using opera-
tional data, but none of their sample sizes were large enough to
draw conclusions about future prediction error. The ADAPT2
project [9] analyzed prediction of TOD location for 51 com-
mercial flights in B737-600 and B737-800 aircraft. Their re-
sults confirmed the difficulty of predicting TOD location within
5 nmi, but they did not indicate a remedy or provide insight into
the causes of the large errors. User Request Evaluation Tool
(URET) developed by MITRE uses a kinematic model, which
was improved by analyzing empirical data [10]; but this paper
will show that the use of nominal descent rate and speed for
each aircraft type could strongly affect the accuracy of the pre-
dicted TOD location if the aircraft follows an FMS-computed
descent.

While lack of intent information can result in large TOD
prediction errors [2,11], the predictions analyzed in [4] used ac-
curate intent information. Aircraft weights were also available
for about 140 of the descents, but using them had a small effect
on the TOD prediction error. The large errors were primarily
due to differences in aircraft performance models between the
FMS and EDA, including Base of Aircraft Data (BADA) fam-
ily 3 described in [12]. Developing a ground predictor that can
accurately predict the FMS-computed descent trajectory is an
open problem, and the primary obstacle is that the aircraft per-
formance models used by the FMS are proprietary.

1I1. PROBLEM STATEMENT

A typical optimized descent is visualized in Fig. 1 and
would be performed as follows. At TOD, where the altitude
is h¢y, the throttle is set to idle and descent is initiated at the
cruise Mach number. At crossover altitude when the target de-
scent CAS is reached, the descent is continued at that CAS un-
til the first constraint. Generally, there is some speed constraint
within the terminal airspace or below a certain flight level. The
International Civil Aviation Organisation (ICAO) specifies the
generic terminal airspace speed constraint of 250 KCAS below
10,000 ft. Deceleration is achieved by a shallow segment at idle
thrust. This paper only considers the descent from TOD down
to altitude hy at the start of this deceleration segment. If this de-
celeration segment does not exist, the end of the trajectory an-
alyzed here is the first trajectory change point below 10,000 ft.
The reason for focusing on the trajectory above hy is that it con-
tains the most uncertainty for controllers, since it is free of ATC
procedural constraints and thus can be optimized by the FMS.

In trying to improve the predictions of TOD location from
an ATC perspective, it seems beneficial to analyze how the TOD
location depends upon the trajectory parameters such as speed
profile, cruise and final altitudes, winds, and aircraft mass. The
TOD location is determined by integrating the equations of mo-
tion along the intended horizontal trajectory. On one hand, this
makes it difficult to intuit the relationship between TOD loca-
tion and the parameters. On the other hand, due to the inte-
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Figure 1. Typical optimized descent trajectory.

gration, the TOD location is a smooth function of the trajec-
tory parameters. Therefore, it can be approximated locally by a
polynomial, which is much easier to grasp intuitively.

The effect of the trajectory parameters on predictions made
by EDA was analyzed in detail in [4], but such approximations
must be confirmed with operational data. The paper did also
report good accuracy for operational data with an approxima-
tion linear in descent CAS, aircraft mass, and change in altitude
(herz — hg). The sample only included about 70 descents for
each of two aircraft types — Boeing 757 and Airbus 320 —
collected over a two-week period. The TOD locations analyzed
were extracted from radar data.

This paper presents the results of regression analysis of the
TOD locations computed by the FMS for over 1000 operational
descents over 2.5 years in Boeing 737 aircraft. This sample
size is acceptable for the number of unknowns in the regres-
sion model. This paper also explains details of the regression
analysis omitted in [4].

IV. DATA SOURCE DESCRIPTION

The trajectory data used in this study were obtained through
Automatic Dependent Surveillance Contract (ADS-C). ADS-C
is a dependent form of surveillance in which a ground station
initiates a contract with an aircraft such that this aircraft will
automatically report information obtained from its on-board
equipment according to conditions specified in the contract. A
little-known feature of ADS-C is the ability to downlink part of
the reference trajectory held by the FMS, which is referred to
as Intermediate Projected Intent (IPI). IPI consists of up to ten
trajectory change points ahead of the aircraft along its intended
trajectory. A trajectory change point can be an altitude change,
a lateral change, a speed change, or a combination of these.

Between February 2009 and September 2011, Airservices
Australia collected data from Boeing 737-800 aircraft equipped
with ADS-C, with ADS-C reports every 2 min. The sample
includes aircraft with the CFM56-7B24 engine as well as the
CFM56-7B26. The flights were inbound to Melbourne, Aus-
tralia (YMML), whose terminal airspace consists of runway-
linked Standard Terminal Arrival Routes (STARs) that are
loaded by the crew into the FMS about 45 min prior to arrival.
With the lateral path to the runway fully specified, the FMS is
then able to calculate an idle-thrust descent as in Fig. 1 and de-
termine the optimal descent point. With the arrival procedure



loaded, the IPI of the ADS-C report reflects this optimized de-
scent and forms the main data for this study.

The IPI is used to determine the TOD altitude h¢,, final
altitude h¢, and horizontal length Stop of the trajectory between
them. The target descent CAS of the aircraft in each sample was
estimated by converting Mach numbers from ADS-C state data
received below crossover altitude and rounding the average to
the nearest 5 kt. Aircraft mass was not available for this study.

The distance Stop depends upon the wind forecast available
to the FMS. The forecast used by the FMS was not available for
this study, so it was approximated by forecast winds extracted
from the World Area Forecast System in a way similar to air-
line flight planning applications using the same forecast prod-
uct [13].

The effect of wind vector W on the length of the descent
as determined by the equations of motion will now be derived.
The direction of the intended aircraft velocity V with respect to
the ground is given by the bearing of the IPI segments, so the
forecast tailwind wy and crosswind w,; as a function of altitude
can be computed from V and W. To track a lateral path, the
airspeed vector V needs to be headed into the crosswind so that
V =V + W. The true airspeed (TAS), which is denoted Vas,

is the magnitude of V. Hence, the effective tailwind wy s 1S

Wil eff = Wy — VTAs {1 — Cos (arcsin ( Wer ))} , (D
Vias

where the trigonometric expression gives the projection of \Y%
onto V. If [t1, to] is the time interval over which the descent oc-

oo . . t
curs, the contribution of wind to Stop is thus W = f tf Wy_etrdt.

Since using the IPI gives Vras, wy, and we, as functions of
altitude h, the variable of integration must be changed to h. If
~1as is the aerodynamic path angle, then

dh

— = Vrassin . 2

7 TAS SIN YTAS (2)
It is assumed that yras is constant in each IPI segment. As IPI
does not include tropopause transition and crossover altitudes,
this is not necessarily true for the initial descent stage since Ay,
may be above the tropopause and the next IPI point may be be-
low crossover. However, with the limited information available,
this assumption needs to be made. Then
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The target speeds for the descent are expressed in Mach or
CAS rather than TAS. Therefore, the airspeed as a function of
altitude in (3) needs to be determined based on the Mach tar-
get above crossover altitude, and based on the CAS target be-
low crossover altitude. For these conversions to TAS, Inter-
national Standard Atmosphere (ISA) conditions were assumed.
The term (sin yras) in (3) can be approximated by the averaged
value over the IPI segment obtained from integration of (2).

The rate of change of wind will affect Stop as well if it
is taken into account in the equations of motion solved by the

FMS trajectory predictor. In particular, it will affect (sinyras)

in (3). Assuming that the component of W parallel to V can be
approximated by wy, the equation of motion for a point-mass

system in the direction V becomes
T—-D dw[]

dV1as
= — — _ 4
7t -~ g sinyras T 4)

Again using (2) and rearranging yields

1dVAq dw T-D
\% _— 5
(2 o + 9+ Vias—— dh sin ytas = - Q)
Define the modified path angle v, g by
1 dVias dwy
L. 5 + g+ Vias :
sin Yy = 220 A sin ypas. (6)
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For an IPI segment that starts at altitude h; and ends at altitude
ho, an average value is approximated by

SIN YTAs / &
hy —ha Jp,
To account for the rate of change of wind, this is used in place
of sin YTAS in (3)

d VT?\S
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A few possible simplifications come to mind. First, W;
might be defined as in (3) without using (7). Second, the ef-
fect of the crosswind might also be ignored, which would mean
replacing (1) by wy_efr = wy to compute Wo. Third, the assump-
tion of constant yras on each IPI segment might be extended
to constant dh/dt, which could then be directly computed from

the details of the IPI segment to obtain /V[73. The correlation co-
efficient between W and any W; is greater than 0.99, so using

W; in the regression analysis in the next section has no dis-
cernible effect.

V. RESULTS

Regression analysis was used to model Stop as a func-
tion of the independent variables cruise altitude h.,, final al-
titude hg, cruise Mach M, descent CAS Vcas, wind contribu-
tion W, and engine type. These variables were described in
the previous section. The regression analysis used data from
1088 descents. Many of the descents have cruise altitude in the
range 380FL-390FL, final altitude around 10,400 ft, and de-
scent speed around 280 KCAS. Overall, though, the values for
these variables seem sufficiently spread out for regression anal-
ysis. Finally, 11% of the descents were in aircraft with CFM56-
7B26 engines, while the others had CFM56-7B24 engines.

The analysis considers models such as

Stop = Bo + Biher, + Bohe + BsM + BaVeas + BsW.  (8)

Of course, the TOD location also depends upon the aircraft
performance model, but that will be reflected in the [3; val-
ues. Equation (8) assumes Stop is linear in the independent
variables, but regression analysis also allows models that are
higher-order polynomials.



Let y be a column vector containing the FMS-computed
values of Stop, and let X be a matrix containing the values
of the independent variables used in the model, with each row
containing the values for one descent. In (8), the model includes
a constant term 3y, which is handled by putting into X a col-
umn of ones. Ideally, the vector of coefficients 3 would satisfy
y = X 3; but there are many more equations than unknowns in
this system, and it has no solution. Instead, the multiple regres-
sion model is y = X3 + €, where € has a Gaussian distribution
with mean zero and variance o2. The least squares estimate of

3 is the vector B that minimizes the residual sum of squares

2
A2 — P .
rss =y —xB) =X (w-D> X ] . ©
, 2

where n is the number of observations and p is the number of
parameters in the model. The residualisr =y —y =y — X3.
If variables, particularly aircraft weight, that affect Stop are

omitted from the data recorded, it will be reflected in B orr or
both.

A. Variable Selection

Computing B is straightforward; the results presented be-
low were obtained with the function 1m () in the R language
for statistical computing. The interesting part of regression
analysis is choosing the model and checking the underlying as-
sumptions. While (8) is an obvious choice for a model that is
linear in the regressors, there are many possible variations as
discussed below. Allowing quadratic and cross terms greatly
increases the number of possible terms, and it is unlikely that
all of them are appropriate. Including extraneous terms leads
to overfitting, which increases error if the model is used for
predictions in the future. Variable selection is the process of
choosing which terms to include. The obvious ways to compare
models are by their RSS or R? values, but that does not indi-
cate whether overfitting is occurring. Hypothesis testing is also
commonly used for variable selection, but it has the drawback
that a significance level of 0.05, say, results in incorrectly ac-
cepting insignificant terms 5% of the time and also incorrectly
rejecting significant terms, even in the best of circumstances.
Consequently, this analysis uses hypothesis testing in conjunc-
tion with cross-validation and additional diagnostics.

In K-fold cross-validation, the samples are randomly di-
vided into K sets S; of roughly equal size. Fori = 1,... K,

let fim be the estimate of the coefficients when fitting a given
model to the samples that are not in S;, and let its mean square
error be
@ — L yo _ xo g9
MSE® — ||y — x03 H (10)

7

where y(9) and X () contain only the n; observations that are in
S;. The cross-validation estimate MSE of the mean square error
is then the average of MSE" and the standard error of MSE

is \/ var (MSE(i)) /K. Using different samples to compute

MSE" than were used to compute B(Z) checks for overfitting.
For variable selection, a “one-standard error rule” is popular. If

model j has cross-validation error MSE ;7 with standard error se;
and subscript 0 indicates the model with minimum MSE;, then

use the simplest model with AZS'\E]- < AYS\EO + sep. Additional
details on cross-validation for variable selection are in [14].

Besides considering second-order terms, a few additional
variations on the basic form of (8) are considered. First, be-
cause engine type is a categorical variable with two possible
values in the data analyzed here, it is included in a model by al-
lowing coefficients to depend upon it, similar to ANOVA. Sec-
ond, by using (7), W includes the rate of change of wind; so the
coefficient of W is theoretically one as explained in [15], pro-
vided the wind gradient is included in the equations of motion.
Even if the wind gradient is omitted from the equations of mo-

tion, the high correlation between W and W; noted at the end
of Sec. IV suggests the coefficient should still be one. Hence,
in some models this is assumed. Finally, it is also plausible that
the coefficient of i should be the negative of the coefficient of
herz, which can be assumed by replacing the two separate terms
with the single term Ah = h¢, — hy.

1) First-order models: Table I lists the models considered
that are linear in the independent variables, roughly in de-
creasing order of model complexity. If W is not listed for a
given model, then its coefficient is assumed to be one. Fig. 2
shows the comparison of the linear models using 10-fold cross-
validation, with each plot being for a different random seed. For

model j, each plot shows AZS’\Ej with error bars denoting = se;,

and the horizontal dashed line shows AZS’\EO + seg. For reasons
explained below, the lengths of the error bars in the two upper
plots are noticeably different from the two lower plots. While

the choice of random seed changes MSE; slightly, it has very
little effect on the differences in their sizes between models. In
short, the differences in MSE between the different models are
within the noise of the data and the models, as indicated by the
error bars.

Closer inspection of the results reveals that, regardless of
random seed, model L2 gives the smallest MSE;, but the first

four models and model L7 have roughly the same MSE;. Com-
paring model L1 with model L2 strongly suggests that Stop
does not depend upon engine type. The results also indicate
that M can be dropped and confirm that the coefficient of W
can be assumed to be one. While models L5, L6, L8, and L9
that use Ah are worse than those that use h, and h¢ separately,
they still all have MSE; < MSE, + se, or very close to it. This
means that the one-standard error rule would select model L9
for any of these seeds. A model that completely ignores h,,, by,
Veas, or W will have MSE greater than 30 nmi?, so no further
simplification of the model is possible.

The following results of hypothesis testing of the coeffi-
cients augment the cross-validation:

e All the terms in model L7 and model L9 have p-values less
than 10715,

e Comparing model L7 to model L9 with the R function
anova () gives a p-value of 3x 1076 for the F-test, which
is strong support for separate terms for the two altitudes.
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First-order Models
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Figure 2.
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MSE (nmi?)
15.5 16.5

145

135

16.5

MSE (nmi?)
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herz, he, Veas, M, W, all interaction terms, all
quadratic terms with different coefficients for the
two different engine types

herz, he, Veas, M, W, all interaction terms, all
quadratic terms

same as model S2 but without 172

herz, e, Veas, M, W, all interaction terms, W2
herzs b, Veas, M, W, all quadratic terms
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herzy he, Veas, M, hiVeas
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Cross-validation results for first-order models using four different random seeds.



16

15

MSE (nmi?)
13 14
>
=

12

model index

16

15

%)
=
[
..

MSE (nmi
13 14
| ‘ |
F——
!

12

2 4 6 8 10 12
model index

Figure 3.

e The F'-test comparing model L4 to model L7 gives a p-
value of 0.052, which is only weak evidence for rejecting
the hypothesis — based on the equations of motion — that
the coefficient of W is one.

e In model L3, the M term has p-value 0.00066, which sug-
gests this model should be chosen over model L7.

Based on the results of both cross-validation and hypothesis
testing, the best first-order models are L3, L7, and L9.

2) Second-order models: With over 1000 samples, it is also
reasonable to consider models with higher-order terms as listed
in Table I. Fig. 3 shows the results of 10-fold cross-validation
for the second-order models, but it also includes results for
model L2 in green to assist in comparison. Allowing the coeffi-
cients to depend upon engine type in model S1 clearly results in
overfitting. Comparing model S2 and model S4 strongly sug-
gests that W2 is the only quadratic term that might be signifi-
cant. Comparing models S2, S4, and S6 strongly suggests that
h¢Vcas is the only interaction term that might be significant. Fi-
nally, comparing model S6 and model S12 shows that using Ah
instead of separate h, and h; terms now gives clearly worse re-

sults, although, of course, MSE for model S12 is still less than
for model L9 — or even model L2. The one-standard error rule
would choose model S6 for one of the random seeds, model S7
for two, and either model S7 or model S8 for the other.

To compare to hypothesis testing, fitting model S6 to all
the data and applying ¢-tests to each of the coefficients gives p-
values less than 10~5, which strongly suggests all of them are
statistically significant. Understanding these apparently contra-
dictory results requires more detailed analysis of the data.
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Cross-validation results for second-order models using four different random seeds. Green is for model L2 in Table 1.

Residuals versus W for model S8.

Figure 4.

Models S6 and S8 are the same except that the latter does
not include W2. Fig. 4 shows for each observation the resid-
ual r versus W for model S8 fit to all the data, which helps to

explain the difference in MSE between these two models. The
green line is an approximation of the mean as a function of W,
as computed by the R function 1oess.smooth (). Since the
green line has the shape of a quadratic polynomial, including
W? in the model gives a better fit, but the plot also suggests
that the better fit is primarily due to the observations with larger
values of |[W|. Cross-validation using only the 1058 descents
with —15 nmi < W < 10 nmi shows that including W? in the
model is no longer advantageous. Since deleting less than 3%
of the data eliminates support for the conclusion that W? is sig-
nificant, it seems best to omit it from the model unless it can be
justified physically or procedurally.
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Figure 5. Relationship between observed Vias and hy.

The next question is whether it is appropriate to include the
cross term hsVeag in the model. The upper plot in Fig. 5 shows
the relationship between Vcas and hy in the sample descents.
The arrangement of the points in clusters can lead to overfitting
that might not be detected by cross-validation. Furthermore,
the cross term is almost collinear with hg, as indicated by the
lower plot in Fig. 5 (where the green line is again obtained
by loess.smooth()) and by a correlation coefficient of
0.94. This can result in 3 having large variance. To check
this possibility, Fig. 6 plots, for each of four different models,
(Bx — Br)/ Bk, using B from each of the 10 cross-validation
fits and each of the four random seeds and (3 is the average of
the 40 estimates for B Note that the range of the y axes are
much larger for the second-order models than for the first-order
models, which means that B is much more stable for the first-
order models. For these reasons, including the cross term in the
model does not seem justified.

The preceding discussion suggests that the second-order
models carry a high risk of overfitting the data, even though
that is not obvious from either cross-validation or hypothesis
testing. While one would like cross-validation and hypothesis
testing to give clear, consistent results indicating which model
to use, that does not occur for reasons that will be discussed
further below.

B.  Further Assessment of First-order Models

Since the second-order models may be overfitting, the con-
servative approach is to use one of the first-order models in ap-
plications that will predict Stop for future observations. The
next step in the analysis is to perform additional diagnostics and
further investigate the estimated prediction error for the most
promising models. The remaining analysis discusses the stabil-
ity of the coefficients, estimates the prediction error, and checks

the standard assumptions of multiple regression for models L3,
L7, and L9.

1) Stability of coefficients: Recall that the coefficient of M
has relatively large variance in the second-order models shown
in Fig. 6. This is also true — in fact, worse — for model L3.
High leverage points are observations that have a relatively
large effect on ,é; see [16], for example. Most the high lever-
age points for model L3 have M < 0.74. Recreating Fig. 2
using only the 1054 descents with M at least 0.74 shows that
including M in the model no longer gives any advantage. Fur-
thermore, its p-value in model L3 is now 0.30. On the other
hand, the range of the estimates of the coefficient of M is now
even larger, perhaps indicating that the range of M values used
in the fit is now too small. In summary, the available data can-
not give precise estimates for the coefficient of M, which also
affects determining whether or not M is significant and estimat-
ing prediction error. All the other coefficients in models L3, L7,
and L9 have small variances as in Fig. 6.

2) Goodness of fit: A popular measure of the goodness of
fit is the R? statistic, which is interpreted as the percentage
of variability in the response explained by the predictors. For
model L9 fit to all 1088 descents, R2 is 0.90, which is gener-
ally considered a very good fit. As explained in [17], however,
the R? value can be affected if X fails to have a multivariate
normal distribution, which is definitely the case here.

A better indicator of the goodness of fit is the variance o2 of
the error €. Of course, this cannot be known exactly, but it can
be estimated by 6% = RSS/(n—p). For model L9, 6 = 3.9 nmi.
If the model error €; has normal distribution with mean zero and
standard deviation &, then |¢;| < 5 nmi for 80% of descents. In
fact, |rj| < 5 nmi for 82% of the descents analyzed. The R?
and & values for models L3 and L7 are the same as for model L9
to two decimal places.

The value of & also explains the differences between the
random seeds in Fig. 2. If cross-validation fold ¢ has m ob-
servations, then %MSE(” will have a x2, distribution. For
10-fold cross-validation with 1088 descents, m = 109; so
o = 3.9 nmi gives a 90%-confidence interval for MSE®Y is
[10.0,12.1] nmi?. If the folds can be treated as having the same

size, then 2% MSE will have a x2 distribution. This would im-

ply mean MSE 15.4 nmi?, standard deviation 0.66 nmi2, and a
90%-confidence interval for MSE is [14.3,16.5] nmi?. The val-

ues of MSE(™ and MSE obtained in the cross-validation of the
first-order models are consistent with these results.

3) Regression assumptions: To complete this regression
analysis, its underlying assumptions should be checked. The
first of these is the assumption that the model error is Gaus-
sian. Normal probability plots (or Q-Q plots) of the residuals of
models L3, L7, and L9 are very close to each other. They are
close to Gaussian but have tails that are a bit too heavy, which
is common in real data.

The next diagnostic test is for collinearity. A detailed dis-
cussion of diagnosing collinearity, including identification of
the collinear terms and the inadequacy of pairwise correlation
coefficients, is in [16]. For model L3, the constant term and
M are strongly collinear because the values of M do not vary
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much. The primary symptom of collinearity is large variance
in estimates of the coefficients, which does indeed occur for the
coefficient of M in model L3. Fig. 6 indicates this is not a prob-
lem for model L7 or model L9, which both show much weaker
symptoms of collinearity.

The ¢th partial residual vector is

y — ZXJ‘BJ‘.

i

r; = r+x;0;

an

The partial residual plot [18] for regressor i shows r} versus
X;, which indicates the relationship between x; and y given the
other predictors. Fig. 7 shows the centered partial residual plots
for model L3, created by the R function crPlots in the car
package. Each r} is the residual that would result by omitting
x; from the model. The red dashed line shows the simple re-

gression fit to the partial residual plot, which has slope 3; from
the original fit. The green solid curve is a local polynomial fit
of the points. The envelope around r; in each plot is roughly in-
dependent of x;, which indicates o is independent of the values
of the independent variables — called homoscedasticity. The
partial residual plots also confirm that there is no obvious non-
linearity in the dependence of Stop on these variables. The
slopes and goodness-of-fit of the red lines further confirm that
herz, he, and Veas are all important in determining Stop. For
M, however, the red line is very flat, and the green line shows
that the points with M < 0.74 may have relatively large lever-
age.
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C. Discussion of Results

Two strong conclusions were reached: Stop does not de-
pend upon engine type, and the coefficient of W can be as-
sumed to equal one. These are supported by cross-validation,
hypothesis testing, and the equations of motion — since the
two engine types are very similar. Choosing the best first-order
model then requires deciding whether M is significant and
whether to use Ah instead of two separate altitudes. The cross-
validation results indicate the differences between the first-
order models are within the noise. Hypothesis testing, how-
ever, suggested M is significant and the model should include
separate terms for the altitudes. The equations of motion sug-
gest separate altitude terms will be appropriate provided there
is “enough” variability in h¢ since the atmosphere (and hence
Veas) varies with altitude, but it is not clear what is “enough”.

While hypothesis testing gives the illusion of clear-cut
choices, it would probably be misleading for these data. Even in
the best scenarios, a certain percentage of hypothesis tests will
give incorrect results. More importantly, the ¢-test for signifi-
cance of a regression coefficient is unaware of the distribution
of that variable, the distribution of residuals, or of the relation-
ship between residuals and that variable. If only one random
seed were used, then strict adherence to the one-standard er-
ror rule for cross-validation would also give a clear choice of
model. Using multiple random seeds, however, gives a more
realistic view. These ideas are illustrated in the next two para-
graphs.

First, the cross-validation results indicate the effects of M
and W? are small relative to the standard errors, even though
the ¢-tests for these coefficients rejected the null hypothesis that
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they were zero. The effect for each of these terms is primarily
due to about 3% of observations with values at the edges of the
distributions of the independent variable. Since there are so few
of these influential observations, the number of them in each of
the 10 cross-validation folds is relatively variable between folds
and between random seeds, which can be reflected in the varia-
tion in standard errors. Determining whether M or W?2 should
be included in the model would require collecting enough ob-
servations to fill in the distributions where there are currently
too few observations. This would probably require on the order
of 10,000 observations.

On the other hand, both cross-validation and hypothesis
tests indicate that the term h¢Vias is significant. The primary
reason that it might not be appropriate to include this cross
term in the model is that the joint distribution of hy and Vas
shown in Fig. 5 has a few clusters of points distributed in such
a way that the cross term can essentially fit each cluster sepa-
rately. Nearly all the available observations fit into the clusters
in the joint distribution, and each cluster is large enough to be
adequately represented in each of the folds. Therefore, cross-
validation indicates the cross term should be included, but doing
so might produce a model that gives poor predictions for values
that are not in these clusters. The explanation for the clusters in
Fig. 5 is not completely known. If it were certain that future ob-
servations would fit the same pattern, then the cross term could
be safely included in the model. Verifying this solely through
operational data, however, is difficult. An alternative approach
would be to consult subject matter experts in air traffic control
procedures and FMS algorithms.

For the best first-order models, 6 = 3.9 nmi, which seems
large compared to the standard deviation and interquartile range
for the observed values of Stop, both of which are 12.4 nmi.
Even for model S6, ¢ is still 3.6 nmi. The most obvious candi-
date to improve the model is aircraft mass. It would be interest-

0 10 20

-10

-20

5000 7000 9000

hy

-5 0 5 10

-15

Partial residual plots for model L3.

ing to be able to repeat the analysis on roughly 1000 observa-
tions for which aircraft mass is available in order to determine
how much of the remaining variance in Stop it explains. It
would probably not be of practical utility, though, since aircraft
mass is not likely to be available for the potential applications
described in the next section.

Despite these issues, the regression analysis has shown that
very simple models fit over 80% of the operational Stop values
within 5 nmi. Models L7 and L9, in particular, seem to satisfy
the regression assumptions well, so this should be a good esti-
mate of future prediction accuracy. It is therefore reasonable to
use it as the basis for future research into the acceptability of
using the models in decision support tools to enable increased
use of FMS-optimized descents.

VI.  APPLICATIONS

This section discusses how and why regression models
might be used in ATC decision support tools, provided future
research finds they are sufficiently accurate. With knowledge
of the parameters hc,, ht, Veas, and W, the ground automation
system can estimate the TOD location. If a trajectory with de-
scent length Stop and descent speed Vcas was not acceptable,
the controller would like to choose a different descent speed
Vias that would result in an acceptable trajectory. Controllers
might wish to see how changing V&, would affect S}, or
they might prefer to specify S;,p and have the tool estimate the
appropriate V%, s. In either case, the ground automation what-if
feature could use the relation Sfop =~ Stop — @ (Veas — Viag)s
where « is the coefficient of Viag estimated by regression of
historical data. This is computationally much faster than a ki-
netic approach, especially when determining V%, ¢ for specified
Stop Where a kinetic approach would require iteratively solving
the equations of motion with different descent speeds. Hence, a
regression model would enable human-machine interfaces such



as a slider bar that might be too slow if based on a kinetic ap-
proach.

Another benefit of using regression models is that the appli-
cation could incorporate aspects of online machine learning to
dynamically update the coefficients if appropriate. This might
occur if the average (unknown) aircraft mass changes, thereby
changing the constant term. The coefficients might also change
on a seasonal basis or if an FMS software revision is deployed.

For greatest use of FMS-optimized descents, ATC tools
must be able to compute accurately a four-dimensional trajec-
tory, but this capability has not yet been demonstrated on a
sufficiently large sample for a variety of aircraft types. The
difficulty is that the aircraft performance models used by the
FMS are proprietary and unavailable to developers of ground
automation. A simple modification to the ground automation’s
aircraft performance model, such as multiplying (7" — D) by
a constant [19], might give sufficiently accurate predictions. A
trajectory prediction technique developed in Australia uses tra-
jectory information derived from ADS-C data, combined with
information on the ground [20]. It has shown that it is possible
to tweak the components of the equations of motion in order
to obtain a very accurate prediction of the aircraft’s trajectory
based on information down-linked from the FMS.

VII. CONCLUSIONS

Regression analysis of the TOD location for over 1000 com-
mercial descents in B737-800 aircraft to Melbourne, Australia
showed that the simple model

Stop = Bo + Brhew + Boht + B3Veas + W + € (12)

gives a standard deviation of e of about 3.9 nmi. Over 80%
of the residuals are less than 5 nmi in absolute value. Adding
a term for M and the second-order term hgVcag gives a stan-
dard deviation of € of about 3.6 nmi, but there are indications
this model might overfit the data. The first-order models have
no sign of overfitting and the estimates of the coefficients are
stable. Furthermore, all diagnostics give good results, indi-
cating the assumptions of the regression analysis are reason-
able. The model is more accurate than has been demonstrated
for any other ground automation predictions of TOD location.
This is most likely because the regression coefficients, being
obtained from fitting FMS-computed TOD locations, reflect the
aircraft performance models used by the FMS; whereas other
researchers have not been able to match the FMS performance
models. Future research should determine whether incorporat-
ing a regression model into a decision support tool to help con-
trollers choose suitable advisories would enable increased use
of fuel-efficient descent trajectories computed by the FMS.
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